
74

NICK MCCULLUM

The K nearest neighbors algorithm is one of the world’s most
popular machine learning models for solving classification problems.

A common exercise for students exploring machine learning is to
apply the K nearest neighbors algorithm to a data set whether the
categories are not known. A real-life example of this would be if you
needed to make predictions using machine learning on a data set of
classified government information.

In this tutorial, you will learn to write your first K nearest neighbors
machine learning algorithm in Python. We will be working with an
anonymous data set similar to the situation described above.

To write a K nearest neighbors algorithm, we will take advantage of
many open-source Python libraries including NumPy, pandas, and
scikit-learn.

Begin your Python script by writing the following import statements:

K NEAREST NEIGHBORS IN
PYTHON - A STEP-BY-STEP GUIDE

The Libraries You Will Need in This Tutorial

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

75

NICK MCCULLUM

Our next step is to import the classified_data.csv file into our
Python script. The pandas library makes it easy to import data into a
pandas DataFrame.

Since the data set is stored in a csv file, we will be using the read_
csv method to do this:

Printing this DataFrame inside of your Jupyter Notebook will give
you a sense of what the data looks like:

You will notice that the DataFrame starts with an unnamed column
whose values are equal to the DataFrame’s index. We can fix this by
making a slight adjustment to the command that imported our data
set into the Python script:

Next, let’s take a look at the actual features that are contained in this
data set. You can print a list of the data set’s column names with the
following statement:

Importing the Data Set Into Our Python Script

raw_data = pd.read_csv(‘classified_data.csv’)

raw_data = pd.read_csv(‘classified_data.csv’, index_col = 0)

print(raw_data.columns)

76

NICK MCCULLUM

This returns:

Since this is a classified data set, we have no idea what any of these
columns means. For now, it is sufficient to recognize that every
column is numerical in nature and thus well-suited for modelling
with machine learning techniques.

Since the K nearest neighbors algorithm makes predictions about a
data point by using the observations that are closest to it, the scale
of the features within a data set matters a lot.

Because of this, machine learning practitioners typically standardize
the data set, which means adjusting every x value so that they are
roughly on the same scale.

Fortunately, scikit-learn includes some excellent functionality to do
this with very little headache.

To start, we will need to import the StandardScaler class from
scikit-learn. Add the following command to your Python script to do
this:

This function behaves a lot like the LinearRegression and
LogisticRegression classes that we used earlier in this course. We
will want to create an instance of this class and then fit the instance
of that class on our data set.

Index([‘WTT’, ‘PTI’, ‘EQW’, ‘SBI’, ‘LQE’, ‘QWG’, ‘FDJ’, ‘PJF’,
‘HQE’, ‘NXJ’,

 ‘TARGET CLASS’],

 dtype=’object’)

Importing the Data Set Into Our Python Script

from sklearn.preprocessing import StandardScaler

77

NICK MCCULLUM

First, let’s create an instance of the StandardScaler class named
scaler with the following statement:

We can now train this instance on our data set using the fit method:

Now we can use the transform method to standardize all of the
features in the data set so they are roughly the same scale. We’ll
assign these scaled features to the variable named scaled_featuers:

This actually creates a NumPy array of all the features in the data
set, and we want it to be a pandas DataFrame instead.

Fortunately, this is an easy fix. We’ll simply wrap the
scaled_features variable in a pd.DataFrame method and assign this
DataFrame to a new variable called scaled_data with an appropriate
argument to specify the column names:

Now that we have imported our data set and standardized its
features, we are ready to split the data set into training data and test
data.

We will use the train_test_split function from scikit-learn combined
with list unpacking to create training data and test data from our
classified data set.

scaler = StandardScaler()

scaler.fit(raw_data.drop(‘TARGET CLASS’, axis=1))

scaled_features = scaler.transform(raw_data.drop(‘TARGET
CLASS’, axis=1))

scaled_data = pd.DataFrame(scaled_features, columns =
raw_data.drop(‘TARGET CLASS’, axis=1).columns)

Splitting the Data Set Into Training Data
and Test Data

https://nickmccullum.com/advanced-python/numpy-arrays/
https://nickmccullum.com/advanced-python/pandas-dataframes/

78

NICK MCCULLUM

First, you’ll need to import train_test_split from the model_validation
module of scikit-learn with the following statement

Next, we will need to specify the x and y values that will be passed
into this train_test_split function.

The x values will be the scaled_data DataFrame that we created
previously. The y values will be the TARGET CLASS column of our
original raw_data DataFrame.

You can create these variables with the following statements:

Next, you’ll need to run the train_test_split function using these two
arguments and a reasonable test_size. We will use a test_size of
30%, which gives the following parameters for the function:

Now that our data set has been split into training data and test data,
we’re ready to start training our model!

Let’s start by importing the KNeighborsClassifier from scikit-learn:

Next, let’s create an instance of the KNeighborsClassifier class and
assign it to a variable named model

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

x = scaled_data

y = raw_data[‘TARGET CLASS’]

x_training_data, x_test_data, y_training_data, y_test_data =
train_test_split(x, y, test_size = 0.3)

Training a K Nearest Neighbors Model

79

PRAGMATIC MACHINE LEARNING

This class requires a parameter named n_neighbors, which is equal
to the K value of the K nearest neighbors algorithm that you’re
building. To start, let’s specify n_neighbors = 1:

Now we can train our K nearest neighbors model using the fit
method and our x_training_data and y_training_data variables:

Now let’s make some predictions with our newly-trained K nearest
neighbors algorithm!

We can make predictions with our K nearest neighbors algorithm
in the same way that we did with our linear regression and logistic
regression models earlier in this course: by using the predict
method and passing in our x_test_data variable.

More specifically, here’s how you can make predictions and assign
them to a variable called predictions:

Let’s explore how accurate our predictions are in the next section of
this tutorial.

We saw in our logistic regression tutorial that scikit-learn comes
with built-in functions that make it easy to measure the performance
of machine learning classification models.

model = KNeighborsClassifier(n_neighbors = 1)

predictions = model.predict(x_test_data)

model.fit(x_training_data, y_training_data)

Making Predictions With Our K Nearest
Neighbors Algorithm

Measuring the Accuracy of Our Model

https://nickmccullum.com/python-machine-learning/linear-regression-python/
https://nickmccullum.com/python-machine-learning/logistic-regression-python/
https://nickmccullum.com/python-machine-learning/logistic-regression-python/

80

NICK MCCULLUM

Let’s import two of these functions (classification_report and
confuson_matrix) into our report now:

Let’s work through each of these one-by-one, starting with the
classfication_report. You can generate the report with the following
statement:

This generates:

Similarly, you can generate a confusion matrix with the following
statement:

This generates:

Looking at these performance metrics, it looks like our model is
already fairly performant. It can still be improved.

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

[[141 12]

 [18 129]]

 precision recall f1-score support

 0 0.94 0.85 0.89 150

 1 0.86 0.95 0.90 150

 accuracy 0.90 300

 macro avg 0.90 0.90 0.90 300

weighted avg 0.90 0.90 0.90 30

print(classification_report(y_test_data, predictions))

print(confusion_matrix(y_test_data, predictions))

81

PRAGMATIC MACHINE LEARNING

In the next section, we will see how we can improve the
performance of our K nearest neighbors model by choosing a better
value for K.

In this section, we will use the elbow method to choose an optimal
value of K for our K nearest neighbors algorithm.

The elbow method involves iterating through different K values and
selecting the value with the lowest error rate when applied to our
test data.

To start, let’s create an empty list called error_rates. We will loop
through different K values and append their error rates to this list.

•	 Next, we need to make a Python loop that iterates through the
different values of K we’d like to test and executes the following
functionality with each iteration:

•	 Creates a new instance of the KNeighborsClassifier class from
scikit-learn

•	 Trains the new model using our training data
•	 Makes predictions on our test data
•	 Calculates the mean difference for every incorrect prediction

(the lower this is, the more accurate our model is

Here is the code to do this for K values between 1 and 100:

Choosing An Optimal K Value Using the
Elbow Method

error_rates = []

for i in np.arange(1, 101):

 new_model = KNeighborsClassifier(n_neighbors = i)

 new_model.fit(x_training_data, y_training_data)

 new_predictions = new_model.predict(x_test_data)

 error_rates.append(np.mean(new_predictions != y_test_data))

82

NICK MCCULLUM

Let’s visualize how our error rate changes with different K values
using a quick matplotlib visualization:

As you can see, our error rates tend to be minimized with a K value
of approximately 50. This means that 50 is a suitable choice for K
that balances both simplicity and predictive power.

plt.plot(error_rates)

83

PRAGMATIC MACHINE LEARNING

#Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
#Import the data set
raw_data = pd.read_csv(‘classified_data.csv’, index_col = 0)
#Import standardization functions from scikit-learn
from sklearn.preprocessing import StandardScaler
#Standardize the data set
scaler = StandardScaler()
scaler.fit(raw_data.drop(‘TARGET CLASS’, axis=1))
scaled_features = scaler.transform(raw_data.drop(‘TARGET
CLASS’, axis=1))
scaled_data = pd.DataFrame(scaled_features, columns = raw_
data.drop(‘TARGET CLASS’, axis=1).columns)
#Split the data set into training data and test data
from sklearn.model_selection import train_test_split
x = scaled_data
y = raw_data[‘TARGET CLASS’]
x_training_data, x_test_data, y_training_data, y_test_data =
train_test_split(x, y, test_size = 0.3)
#Train the model and make predictions
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors = 1)
model.fit(x_training_data, y_training_data)
predictions = model.predict(x_test_data)

The Full Code For This Tutorial
You can view the full code for this tutorial in this GitHub repository.
It is also pasted below for your reference:

84

NICK MCCULLUM

#Performance measurement
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
print(classification_report(y_test_data, predictions))
print(confusion_matrix(y_test_data, predictions))
#Selecting an optimal K value
error_rates = []
for i in np.arange(1, 101):
 new_model = KNeighborsClassifier(n_neighbors = i)
 new_model.fit(x_training_data, y_training_data)
 new_predictions = new_model.predict(x_test_data)
 error_rates.append(np.mean(new_predictions != y_test_data))

plt.figure(figsize=(16,12))
plt.plot(error_rates)

Final Thoughts
In this tutorial, you learned how to build your first K nearest
neighbors machine learning model in Python.

Here is a brief summary of what you learned in this tutorial:

•	 How classified data is a common tool used to teach students
how to solve their first K nearest neighbor problems

•	 Why it’s important to standardize your data set when building K
nearest neighbor models

•	 How to split your data set into training data and test data using
the train_test_split function

•	 How to train your first K nearest neighbors model and make
predictions with it

•	 How to measure the performance of a K nearest neighbors
model

•	 How to use the elbow method to select an optimal value of K in
a K nearest neighbors model

