Introduction to Pandas

Hey - Nick here! This page is a free excerpt from my $199 $99 course Python for Finance and Data Science, which is 50% off for the next 50 students.

If you want the full course, click here to sign up and create an account.

I have a 30-day satisfaction guarantee, so there's no risk (and a ton of upside!) in signing up for this course and leveling up your Python skills today!

Pandas is a widely-used Python library built on top of NumPy. Much of the rest of this course will be dedicated to learning about pandas and how it is used in the world of finance.

What is Pandas?

Pandas is a Python library created by Wes McKinney, who built pandas to help work with datasets in Python for his work in finance at his place of employment.

According to the library’s website, pandas is “a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.”

Pandas stands for ‘panel data’. Note that pandas is typically stylized as an all-lowercase word, although it is considered a best practice to capitalize its first letter at the beginning of sentences.

Pandas is an open source library, which means that anyone can view its source code and make suggestions using pull requests. If you are curious about this, visit the pandas source code repository on GitHub

The Main Benefit of Pandas

Pandas was designed to work with two-dimensional data (similar to Excel spreadsheets). Just as the NumPy library had a built-in data structure called an array with special attributes and methods, the pandas library has a built-in two-dimensional data structure called a DataFrame.

What We Will Learn About Pandas

As we mentioned earlier in this course, advanced Python practitioners will spend much more time working with pandas than they spend working with NumPy.

Over the next several lessons, we will cover the following information about the pandas library:

  • Pandas Series
  • Pandas DataFrames
  • How To Deal With Missing Data in Pandas
  • How To Merge DataFrames in Pandas
  • How To Join DataFrames in Pandas
  • How To Concatenate DataFrames in Pandas
  • Common Operations in Pandas
  • Data Input and Output in Pandas
  • How To Save Pandas DataFrames as Excel Files for External Users

Moving On

To start, let’s move to our next lesson and begin learning about pandas Series, a special data structure available in the pandas library.